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6
MAPPING OF OVERBURDEN

SUBSTRATES FOR MINE
SITE RE-CULTIVATION

Jan Frouz, Miroslav Pikl, Olga Vindušková, and Frantǐsek Zemek

6.1 Introduction

Open pit coal mining has a severe impact on ecosystems in the mining area.
An ecosystem affected by opencast mining is literally erased, either excavated or
buried. Overburden (spoil) overlying the coal seam is removed and deposited in
heaps leading to disruption of large areas (Bell & Donnelly, 2006). In many cases,
overburden material becomes the parent substrate for soil development (Šourková
et al. 2005; Karu et al. 2009).

This overburden material comes often from large depth, often over hundred
meters. These substrates differ substantially from recent soils. They often have
extreme pH (too acidic or too alkaline), extreme texture (gravel, sandy or clay),
and in many cases the material is separated in terms of grains of similar size.
In some locations overburden material may contain high concentrations of heavy
metals and or may have high salt content reflected in high conductivity. The sub-
strates often lack recent organic matter but may contain fossil organic matter of
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86 6. Mapping of Overburden Substrates

various origin (Bradshaw 1997).
Contrary to other polluted sites where toxicity appears as a result of the

accumulation of exogenous toxic substances, in post-mining sites the toxicity is
typically a result of in situ weathering. Weathering, namely pyrite oxidation, de-
creases pH and may release heavy metals. Weathering may also release other ions
that may cause high conductivity of the substrate resulting in toxicity of post min-
ing sites (Bradshaw 1997; Frouz et al. 2005). Determination of potential toxicity
of post mining sites is important for prediction of their future development. For
example in Sokolov coal mining district in nontoxic sites, vegetation coverage can
be reached by proper reclamation in 5-10 years and even spontaneous succession
processes lead to vegetation cover in 10–15 years (Frouz et al. 2014), whereas
in sites with high pyrite oxidation, vegetation may not appear for next 50 years
(Frouz et al. 2014).

Biological tests with overburden material show that its toxicity in Sokolov
area is most closely associated with pH, conductivity and polyphenol content.
Primary cause of pH decrease is usually pyrite weathering. Pyrite in coal mining
sites is usually associated with the coal seam; consequently, toxicity problems are
typically the most severe in substrates that contain traces of coal. Identification
of coal may thus be a good indicator of toxicity. This effect may be enhanced
in materials with low sorption capacity, and low content of basic cations such
as in sand or kaolinite. Besides toxicity associated with coal accompanied by
pyrite, there may be also other mechanisms causing toxicity, e.g., sites with high
conductivity given by high content of carbonates and sulfates may be toxic for
plants and soil fauna due to high osmotic pressure (Frouz et al. 2005).

Identification of fossil organic matter (FOM) and characterizing its quality
may be important in identifying potentially toxic sites. After reclamation or
during spontaneous recovery of the vegetation cover, the content of recent soil
organic matter (RSOM) gradually increases (Šourková et al. 2005). This has
positive impacts on soil quality (increases porosity, aeration, water capacity of
soil and infiltration). RSOM also represents an energy and nutrient source for soil
biota (Brady & Weil 1999); moreover, RSOM represents a carbon sink and may
reduce the rising concentration of CO2 in the atmosphere (IPCC 2007).

The amount of RSOM in soils is determined as organic carbon content. How-
ever, in mine soils fossil forms of organic carbon such as coal or kerogen can also
be frequently found (Vindušková & Frouz 2013). Conventional methods for soil
organic carbon determination unfortunately cannot distinguish between recent
and fossil carbon forms. The only method suitable for such differentiation is ra-
diocarbon dating. However, this method is very expensive, thus it cannot be used
routinely. Proximal remote sensing techniques such as near infrared spectroscopy
(NIRS) hold potential to discriminate between recent and fossil carbon forms.

In general, remote sensing techniques are useful in the study of many soil
properties (Ben-Dor et al. 1997; Mulder et al. 2011). However, a common
problem with the study of soil properties using airborne devices is that soil is
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6.2. Material and Methods 87

often covered by vegetation and if the soil is bare, the surface layer of the soil is
often covered by physical or biological crusts that may have different properties
than deeper soil horizons. In this aspect, post mining areas are ideally suited
for using remote sensing tools as they have a large area of bare soil which often
was quite recently homogenized during the heaping process. Moreover, for many
key processes such as erosion or plant establishment, the conditions of the surface
layer are more important than conditions in deeper soil.

In this chapter, we illustrate the possible application of remote sensing tech-
niques to map post mining substrates having various types of potential toxicity
or even to directly predict the toxicity of post mining sites and estimate content
of fossil and recent organic matter.

6.2 Material and Methods

6.2.1 Study Area

Two set of post mining sites were used in this study. The first set consists of 42 sites
described in (Frouz et al. 2005). These were sampled in three mining districts:
1. Sokolov – coal-mining district near the towns Sokolov and Chodov (North-West
Czech Republic), 2. North Czech coal mining district near B́ılina and Úst́ı nad
Labem (North Bohemia), and 3. Lusatian mining district near Cottbus (Eastern
Germany). Both Czech areas are brown coal mining district whereas lignite is
mined in Germany near Cottbus. In all sites, open cast mines produce large areas
of tailings where spoil material was sampled. In both Czech coal-mining districts,
claylike tertiary sediments dominated, whereas sand was most frequent in German
mining district. This set was used for comparison of chemical and ecotoxicological
characterization of substrates with laboratory spectral measurements.

The second set of plots was located in post mining plots near Sokolov (Czech
Republic). Average altitude of the study area is about 500—700 m a.s.l. In major-
ity of the heaps, the overburden consists mainly of tertiary clays of Cypris series
with alkaline pH. These clays are dominated by kaolinite, illite and montmoril-
lonite, and contain 2–10 % of fossil organic matter. In smaller extent, other sub-
strates are present, namely neutral or slightly acidic tuffites, which are weathered,
volcanic ashes of tertiary origin underlying the coal seams, acidic clay substrates
dominated with kaolinite, coal and acidic coal rich kaolinite clays, and finally
jarosite crusts on tertiary clay substrates. This set, covering a part of the heap
of an area about 0.5 ha, was used for comparison of chemical and ecotoxicological
characterization of substrates with field measurements of spectra, along with the
first set. In addition, this set was used for classification of substrates based on
airborne hyperspectral data. In this part of the heap, substrates were mapped by
field survey and pH was measured in a regular 25 × 25 m grid.
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88 6. Mapping of Overburden Substrates

6.2.2 Laboratory Chemical and Ecotoxicological Characterization
of Substrates

The material for chemical analysis was air-dried and stored in a dark place at
room temperature. Soil pH in water was measured using a pH meter with glass
electrode, conductivity was measured in filtrated 1:5 spoil water suspension using
a conductometer. Two ecotoxicity tests were applied, i.e., germination of plant
Sinapis alba and enchytraeid toxicity test. S. alba germination was tested with
a pot experiment similar to that used by Fargasová (Fargasová 1994; Fargasová
1998). The test is based on proportion of seeds that germinate on given substrate.
The enchytraeid toxicity test was conducted as described by Frouz et al. (Frouz
et al. 2005); this test measures growth of population of potworms in individual
substrates from constant number of introduced even-aged potworms.

6.2.3 Spectral Data

A. Laboratory spectral measurements
Spectral signatures of 42 clay substrates collected at the first site were measured
in a laboratory. The samples were dried and sieved through 2 mm calibrated sieve.
The samples were measured in black Petri dishes with ASD FieldSpec 3: spectral
range 350–2500 nm, sampling step 1 nm, full width at maximum half – FWHM
3 nm. The Petri dishes with soil samples were placed on a turntable (ASD Inc.)
ensuring that measured spectra were homogenized (average of 50 measurements)
and all samples were measured with the same viewing and illuminating geometry.
White reference panel (Spectralonr) was used to obtain reflectance data directly.
Measured spectra were corrected using dynamic, parabolic linear transformation
(Beal & Eamon 2009) in order to compensate the shifts between visible and infra-
red regions.

To generate a model relating laboratory spectral data with substrate pH or
toxicity, two steps were used. In the first step, the correlations between reflectance
of substrates at individual wavelengths and pH and toxicity were calculated. Then
we identified all local correlation minima or maxima as a function of wavelength.
From these, we selected individual wavelengths or mean wavelengths for a certain
interval if correlation formed a rather flat plateau. These values were then the
subject of multiple regression analysis with forward selection in Statistica 10.

B. Field spectral measurements
Field reflectance measurements (ASD FieldSpec 3) of nine substrates were carried
out at 14 homogenous plots in the second test area (Sokolov region). We used
the white reference panel (Spectralonr) before and after each substrate mea-
surements to obtain directly surface reflectance signatures. The parabolic linear
transformation was carried out on measured spectra.
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6.3. Material and Methods 89

Each plot spectrum was calculated as an average of about 15 individual mea-
surements as some measurements were identified as outliers. ASD measurements
were resampled to fit the spectral resolution of the hyperspectral airborne data
described in the next section.

C. Airborne spectral measurements
Airborne hyperspectral data over the second site (Sokolov region) were acquired
on August 6th 2008 using AISA Eagle pushbroom hyperspectral system with
spatial resolution 0.4 m, spectral resolution of 10 nm within spectral range of 400–
1000 nm. Ancillary field data were collected simultaneously with the overflight.
Field data supported atmospheric and geometric corrections of airborne images
(see Section 2.3 for details).

We used CaliGeo (Spectral Imaging Ltd.) software to carry out the radiomet-
ric corrections and orthorectification of the raw AISA Eagle image data. ATCOR-
4 software was applied for atmospheric, topographic and BRDF corrections of
airborne data.

6.2.4 Mapping of Clay Substrate Composition

We used spectral angle mapper classifier (SAM) to classify soil substrates from
the hyperspectral image. SAM is a method for comparing imagery spectra to
a spectrum representing the class (Kruse et al. 1993). Training spectra for indi-
vidual substrate classes were taken from the field ASD measurements described in
6.2.3. The SAM classification was implemented in ENVI using a multiple thresh-
old option. A threshold value was set up for each substrate class. The regions of
interest (ROI) were determined based on the known positions of substrates in the
area and average value of spectral angle was calculated for a given ROI.

6.2.5 Fossil Organic Matter Characterization Using Near Infrared
Spectroscopy

Near infrared spectra were laboratory measured in a spectral range from 1000 to
2500 nm. Artificial mixtures (n = 125) of claystone, coal and recent organic matter
(from fermentation layer) were measured as well as a set of 14 soils in which recent
carbon was previously determined by radiocarbon dating (Karu et al. 2009). The
recent carbon content in mixtures was calculated from the proportion of recent
organic matter and its total organic carbon content. The total organic carbon
content in mixtures was calculated as a sum of organic carbon from claystone,
coal and recent organic matter.

Partial least squares (Janik et al. 2007) was used to develop calibration models
between reflectance and total organic carbon (Ctot) and recent carbon (Crec)
content — first using only the mixtures, then adding also the soil spectra.
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6.3 Results and Discussion

6.3.1 Spectral Signatures of Different Clay Substrates Measured
in a Lab and Their Relation to Chemistry and Toxicity

Earlier studies (Frouz et al. 2005; Frouz et al. 2011) show that conductivity and
pH are major factors contributing to substrate toxicity for representatives of both
soil fauna and plants. Using multiple regressions with forward selection, we were
able to produce an equation that predicts pH of overburden from laboratory spec-
troscopic data (Figure 6.1) obtained in three mining sites (Table 6.1). Despite
the fact that this approach was very successful in determining pH (the equation
is highly significant and explains more than 80 % of data variability), the attempt
to explain toxicity the same way was much less successful. Although the resulting
equation was also statistically significant it explained only 23 % of data variability.
This discrepancy between successful estimate of pH and less successful estimate
of toxicity is caused by fact that the toxicity of post-mining sites is quite complex
as several environmental factors and their combinations contribute to the final
toxicity of the substrate (Frouz et al. 2005; Frouz et al. 2011). The most frequent
reason for the toxicity is a low pH. Low pH also increases the solubility of alu-
minium and other metals which may contribute to the toxicity of substrates. This
indicates that the effect of pH may be modified by the presence of metals, namely
As. High conductivity caused by the high concentration of cations, namely Na, is
another reason for high toxicity. The high conductivity is sometimes accompanied
by a high pH. Finally, toxicity is often accompanied by coal, as coal content closely
negatively correlates with pH but potentially may affect soil biota also directly
through polyphenols in coal (Frouz et al. 2005). This complexity of toxicity is
a reason why the attempt to estimate toxicity as a simple function of spectral
properties did not meet with much success.

6.3.2 Spatial Distribution of Clay Substrates Using AISA Eagle
Images and Their Use for Prediction of Toxicity

Geological substrates forming the overburden have similar chemical properties
and toxicity values (Frouz et al. 2005) and are often distinct from other sub-
strates. Because toxicity is very complex problem, as was explained above, it
seems to be more promising to use hyperspectral data to classify prevailing over-
burden substrate and then estimate potential toxicity based on mean values of
toxicity for individual overburden substrates. Classification of individual over-
burden substrate types from airborne hyperspectral data was done using spectral
angle mapper. Overall classification accuracy was 71.18 %. Classification results
for each substrate are presented in Table 6.2. Clay substrates of the Cypris series
were divided for the purpose of classification into yellow and grey subclass. Both
dominate the area and these subclasses reached the highest classification accuracy.
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Figure 6.1 Samples and spectra of selected clay substrates: Top left image, green line
in plot above – yellow clay (illite + jarosite). Top middle, red line – jarosite crust. Top
right, blue line – coal clay (kaolinite + coal)

This classification was then used to produce a map of substrates in about one
ha area of Podkrušnohorská heap with large variety of substrates (Figure 6.2).
In this area, 14 samples were randomly taken and their toxicity was tested by
Sinapis alba germination test. The combination of average substrate toxicity with
the substrate map obtained from hyperspectral data gives us spatial prediction
of substrate toxicity. Comparison of toxicity predicted using hyperspectral data
and measured toxicity in these 14 points indicates that predictions of substrate
toxicity using hyperspectral data with substrate classification explains about 55 %
of data variability. This is greater than toxicity as predicted on basis of pH
value extrapolated from regular grid of points, which explains only 21 % of data
variability.

The reason why hyperspectral mapping is much more successful in this context
is connected with the manner in which the heap was created. Individual piles of
material of different origin are heaped in various shapes and in sizes which are
below the resolution of the 25 × 25 m grid. Edges of these piles are very narrow
and basically unpredictable by classical interpolation techniques.
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Table 6.1 Results of multiple regression estimating substrate (a) pH and (b) toxicity
based on laboratory hyperspectral data.

a) Wavelength Coefficient SDa pa

intercept 9.46 0.95 < 0.0001
1270 -247.23 156.80 0.1241
435–450 88.59 13.67 < 0.0001
380–385 -105.61 18.59 < 0.0001
350 -7.94 9.10 0.3891
1880–1885 76.09 11.84 < 0.0001
1425–1430 -106.47 17.97 < 0.0001
1249 265.60 160.15 0.1064

b) Wavelength Coefficient SDa pa

intercept 0.76 0.23 0.0024
1290 -2.00 0.62 0.0026
435–450 7.09 3.47 0.0481
380–385 -6.48 4.33 0.1427

a SD – standard deviation, p – probability

Table 6.2 Classification accuracies for overburden substrates in Podkrušnohorská post
mining heap near Sokolov.

Substrate Producer accuracya [%] User accuracyb [%]
coal clay 97.76 51.82
clay of cypris series 100.00 99.76

– yellow
tuffites 48.85 100.00
kaolinitic clays 76.49 99.48
underlying soils 27.27 25.53
clay of cypris series 93.42 85.34

– grey
coal with clay 50.00 97.40
coal 60.89 100.00
Jarosite cover on clay 49.02 100.00
a Producer accuracy results from dividing the number of correctly classified pixels in each

class by the number of training pixels used for that class.
b User accuracy results from dividing the number of correctly classified pixels in each

category by the total number of pixels that were classified in that class.
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Figure 6.2 Map of substrate classification obtained from hyper spectral data and pH
interpolated from field measurements. Numbers in the left mark type of substrate: 1 –
coal clay, 2 – clay of cypris serie yellow, 3 – tuffites, 4 – underlying soils, 5 – kaolinite
clay, 6 – clay of cypris serie grey, 7 – jarosite. Scale at the bottom shows pH color coding.

6.3.3 Can Near Infrared Spectroscopy Distinguish Between Re-
cent and Fossil Organic Matter in Mine Soils?

To find out if content of recent and fossil organic matter can be predicted from
near infrared spectra, predicted values of recent and total organic carbon were
compared with their true values (measured by radiocarbon dating and elemental
analysis).

Calibration models based only on artificial mixtures could not predict recent
nor total organic carbon in soils successfully. However, addition of soil spectra
to the calibration improved the predictions considerably – as indicated by root
mean square error of cross-validation (RMESCV) and modeling efficiency (EF)
comparing explanatory power to model complexity. Models both for recent carbon
(RMSECV=0.70, EF=0.95) and total organic carbon (RMSECV=0.85, EF=0.94)
were highly successful (Loague & Green 1991; Michel et al. 2009). Parameters of
the derived calibrations are similar or better than those reported by other authors
who recommend NIRS for measurement of different carbon fractions (Bornemann
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et al. 2008; Michel et al. 2009).
The improving effect of soil spectra in calibrations indicates that the spectra

of the mixtures and soils differ significantly, i.e. have different spectral features.
This is understandable as we may expect that recent organic matter in soils is
older and thus more decomposed and fossil organic matter in soils may be modified
by weathering and decomposition. The soil samples may be also more variable in
mineral composition which may also affect the soil spectra.

Figure 6.3 First loading spectra of calibrations for total organic carbon (Ctot) and recent
carbon (Crec) together with spectra of C-poor and C-rich claystone.

The most important spectral features for the prediction of recent and total
organic carbon are depicted as first loading spectra resulting from partial least
square regression (Figure 6.3). The peaks observed can be well assigned to char-
acteristic absorptions of soil organic matter in the near infrared region that have
been previously described in literature (Ben-Dor et al. 1997; Michel et al. 2009;
Stenberg et al. 2010); their assignments are listed in Table 6.3. For example, it
is visible even to naked eye that absorption characteristics of aliphatic structures
(1726 and 1761) are more pronounced in C-rich than in C-poor claystone. The
same features are visible in the Ctot loading spectrum. This corresponds well
with the aliphatic character of fossil organic matter in the studied area, which is
mainly kerogen of algal origin (Kř́ıbek et al. 1998).

6.4 Conclusions

This contribution demonstrates the usefulness of remote sensing techniques in
studying post mining sites and at the same time the large potential of these
techniques for practical applications.

Classification of overburden substrates brings much better prediction of spatial
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Table 6.3 Band assignment (after Ben Dor et al., 1997; Michel et al., 2009; Stenberg et
al., 2010;)

Wavelength (nm) Assignment Possible constituent

1449 4ν of C=O carboxylic acids

1465 OH in water (ν2 + ν3); cellulose/lignin/starch/
CH2 pectin

1582 OH in water (2ν); pectin/starch/cellulose
H-bonded OH group

1726 2ν of aliphatic C-H stretch cellulose/lignin/starch/
pectin/wax/humic acid

1761 2ν of aliphatic C-H stretch cellulose/lignin/starch/
pectin/wax/humic acid

1929 OH in water (ν1 + ν3); cellulose/lignin/glucan/
3ν of -C=O and of -COOH, pectin/wax/humic acid
C=O of ketonic carbonyl,
CONH2

2068 3ν of aromatic C=C, cellulose/glucan/pectin
COO-hydrogen bond,
C=O

2137 3ν of aromatic C=C, cellulose/glucan/pectin
COO-hydrogen bond,
C=O

2198 3ν of aromatic C=C starch/lignin/wax/tannins

2276 combination of O-H stretch
and C-O of cellulose;
combination of C-H stretch
and CH2 deformation
of starch

2309 3ν of aliphatic C-H, humic acid/wax/starch
aromatic ring stretch

2347 3ν of aliphatic C-H cellulose/lignin/glucan
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distribution of substrate toxicity than interpolation of chemical properties that
give best correlation with toxicity from field surveys. There can be a potential
to improve the prediction of toxicity by including some auxiliary environmental
parameters related to orographic features (e.g. latent drainage system, slope).

Near infrared spectroscopy combined with partial-least squares provides ac-
curate estimates of recent and total organic carbon in mine soil samples. This
method may offer a simple, rapid, and low-cost alternative to expensive and time-
consuming radiocarbon dating.
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